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A method for determining weights and points for the numerical calculation of the matrix 
elements of a hermitian operator is proposed. For local non-negative operators, this method 
reduces to the Gauss’ method of quadrature, while it is completely novel for non-local 
operators. Analogously with Gauss’ method of quadrature, the best n points are the zero of 
the polynomial of degree n belonging to the sequence of polynomials which are orthogonal 
with respect to the given operator. The method for obtaining the weights, which are 
n(n + 1)/2, is indicated, and it is proved that (n + I)(n + 2)/2 - I distinct matrix elements are 
exactly reproduced using the above determined weights and points. Some sufficient conditions 
in order that the zeros of the polynomial are internal to the interval of integration are 
examined. As a practical example the evaluation of exchange integrals generated by an atomic 
inner shell is given. ‘( 1985 Academic Press, Inc. 

In many problems of quantum mechanics one must evaluate integrals such as 
SC f,xfi dr, where tl is a hermitian operator in the space L:(C) = {g: C+ @: 
SC ‘@gdz < a >, c c R” [ 11. If the functions are subjected to special conditions, it is 
possible to modify the operator, without its physical meaning being substantially 
changed, in such a way that these restrictions are no longer demanded. For exam- 
ple, if the integral were jtf,(x) LYE* dx and the functions f,, fi had to vanish at 
the endpoints, by taking the operator Co= (x-u)(h-X) X(X--u)(h-X) such a 
restriction is unnecessary. Similarly, for an infinite interval, it can be useful to 
modify the operator by taking a’ = em ‘itLe ~ ‘, or CY’ = e ~ “cle -.“, depending on the 
extremes of integration. In the same manner, one can change a so that the set of all 
polynomials is contained in L:(C). 

Therefore, we shall examine the numerical integration of integrals of the kind 
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with functions f and g having the form C,“=O, asxs (the restriction to a single 
variable is only for brevity). The question is analogous to that of the numerical 
integration using Gauss’ method, and it consists in determining a set of values of 
x,x0, Xl,..., X,-l, belonging to the interval [a, b], and a set of numerical constants 
H, (O<i,j<n-1) so that the sum &Hvf(xi).g(xj) is equal to (flu/g) for 
polynomials having the highest degree. The utility of the technique proposed is sub- 
stantially for non-local operators, for which it is completely novel, while, for local 
non-negative operators it leads to standard Gaussian quadrature [2]. 

Starting from the knowledge of the values I,, = (~‘1 a Ix’) and assuming that the 
determinant 

D,,, = 
Z 10 Z 11 .‘. Z l,n- I 

In-1.0 Ll .+. In-l,n-1 

is not zero for all n, it is possible to find polynomials PO, P ,,..., P ,,..., of degree 
0, l,..., i,..., orthogonal with respect to tl, i.e., which satisfy the relation ( PiI ct 1 Pi) = 
6,( PiI c( 1 Pi). As an example, one can follow the Gram-Schmidt orthogonalization 
method. We denote with 0 the matrix (cc x cc) having entries I,,, and with J the 
diagonal matrix with entries J,= (PiI CI IP,); then one has: Jl = LO’L, where L is 
the triangular (inferior) matrix composed by the coefficients of the P,. 

If f and g are polynomials of degree p and q respectively, one can write f(x) = 
Ci”=ofiPdx), g(x)=Cy=o gjP,(x), wheref,, gj are univocally determined constants. 
Putting f= ‘(f&f,,...,f,, O,...), g= ‘(go, gl,..., gq, O,...), as the vectors of the com- 
ponents of f and g with respect to P(x)= ‘(PO(x), P,(x),...) [ =‘x’L, with 
x = ‘(1, x, x2,...)] the precedent equalities can be written in matrix form as 

f(x)=‘fP(x), ‘Y(x) = ‘&P(x). 

With these notations, one has: 

j* f(x) erg(x) dx = ‘f [ j” p(x) a’P(x) dx] g = Tkllg[ = ‘fLO’Lg] 
a (I 

(1) 

Analogously, one can write: 

n-1 n-1 

1 H,f(xi) g’x,)=,~o ‘~~H,‘P(xj)g 

i,j = 0 

= ‘m-u’Pg[ = ‘mYm’W’Lg], (21 

where P = P(xO,..., x,~ 1) is the matrix (co x n) with entries P,, = P,(x,) [and 
X,, = (xy)“] and W is the matrix n x n of the H,. 

In order that (2) gives the best approximation of (1) for every choice off and g, 
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one must find the points x0,..., x,- I E [a, b] so that the matrices J and PW’P have 
the greatest number of elements equal. It is very easy to show that the 
approximation (2) of (1) is exact for all polynomials f and g of degrees p and q 
respectively, if and only if the minors (p + 1) x (q + 1) given by the first (p + l)- 
rows and the first (q + 1)-columns of the above-mentioned matrices are equal. 

Note that the minor of order n of P 

Po(xo) PO(Xl) .‘. Po(x,, ~ I) 
p, )= p,M P,(x,) ‘.. Pl(X,,- I) n 

p,-,(x0) cl(Xl) ..’ Pn-I(-%-I) 

does not vanish if we take x0,..., x,_ 1 different among them; thus it is possible to 
determine W so that J, PW’P have the corresponding minors of order n Jl(,,), - 
IP(~~W~P,~) equal by setting 

w = ~)(n:J(n)f~~; [I=x,: 4,,?qT:1. (3) 

In that case W is a hermitian matrix. From what we have said before, the 
approximation (2) of (1) is exact at least for all polynomials f and g of degree up 
to n - 1. By examining the equality 

9 = PW’P [ 0 = XW’X] (*I 

as a system in the unknowns x0 ,..., x,- , , H, (which are n2+n) it is reasonable to 
require that besides the equations concerning the mentioned minor of order n, other 
n equations (and their symmetries) are solvable by a suitable choice of the xi. 
However, one must bear in mind that it is always necessary that x0,..., x,_ , be 
located in the interval [a, 61. For example, let us suppose that the two matrices in 
(*) have, besides J,,,, the elements Jn,O, J,, l,O,..., Jzn- 1 ,, (and their symmetries) 
equal; moreover, let us suppose that o! is such that the function a( 1 )(x) > 0 in [a, b] 
(a(l) is not identically zero if D,,, #O). Then consider the product (f, g)O = 
jS: 41)(x)f(X) g(x) dx, and let pal, P~~,...~ pan,..., be orthogonal polynomials (of 
degree 0, l,..., n,...) with respect to this product. It is known [2, 31 that the zeros 

are contained in (a, b) and are distinct and that 
fg(fyi;j>%;x =“: ;L 11) = C”: ’ h .f(4 with suitable weighis h for 
polynomials f having degree d 2n’-\. gencl: by chasing x0 = too ,..., x, _, zz,,,, _ i 
we obtain the desired equalities. 

Analogously, if a(P,) > 0 [a(xj) 3 0] in [a, b], and if we take x0 = tfl,..., x,- , = 
tj,n - I Lx0 = rljl~~~~~ xn - I = qj,nP ,] as the zeros of the nth orthogonal polynomial 
P,~[ ~$1 with respect to the product (A g)i = J$ a(Pj)(x) f (x) g(x) dx, I: (f, g)-j = 
fIaW)jlo f(x) g(x) dxl, th e 

,,,,,..., 2x- l,jl equal. 
matrices in (*) will have the elements J, j,,.., J,, _ , i 

W owever, this last condition is less significant than the 
preceding one, because it depends on the polynomials that are considered.) 

The most reasonable requirements are that the matrices have, besides JIC,,[U,,,], 
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the elements J,,O ,..., .Z,,,- , [Z,,0 ,..., Z,, n- ,] (and their symmetries) equal This is 
satisfied, as it is easily verified, by taking x0,..., x,-i as the zeros of P,, when these 
are contained in [a, b]. Moreover in this manner the matrices will have the entire 
(n+ I)th row and column equal, except J,,, [Z,,]. With this choice the 
approximation (2) of (1) is exact for polynomials j; g of highest degree n + 1, n (or 
n, n + l), respectively. 

One condition which guarantees that, for each n, P,, has all its zeros in (a, b), is 
that, setting a(P(x)) = ‘(cYP~, aP, ,...) [U(X) = ‘(tl( l), E(X),...)], the following equality 
is verified 

cd(P(x))=o(x) DP(x) [a(x) = w(x) L-'DLX = o(x) Ux], (4) 

where w(x) is a function 20 in (a, b) and KU is a diagonal matrix [while T is a 
triangular matrix]. In fact, setting f. g = jt w(x) ,f(x) g(x) dx, one has 

J=(P(x)~cr~'P(x))=(P(x)~o(x)'P(x)'D) 

=P(x)"P(x)D=AD[O =l?T], (5) 

where A is given by /i j, = st o(x) P,(x) Pi(x) dx [f, = Ji o(x) xi+’ dx]. Since D and 
J1 are diagonal matrices, so is A, that is the P,s are orthogonal with respects to the 
product S. g; hence they have simple zeros contained in (a, b). 

If the operator CI is real, and the interval is all R, (4) can be modified by an 
analogue relation, in which D is the inverse of a tridiagonal symmetric matrix. In 
fact, in that case, each polynomial p(x) of degree Y is expressed as 

,I + 1 
@tx) PCx) = C cja(Pj) 

j=O 

with suitable constants c,. If x0 was a complex zero of P, (which we can choose to 
have real coefficients) and if P,(x) = ^J,~(.\: - x,,)(x - x0)(x -x2). . . (x -x, ,) then 
one would have 

i 
h 

w(x) y,(x - x())(x - SJX - x*)2 . . . (.x-x,,m,)*dx=jh P, nf c, aP, dx 
a (1 /=O 

P,, ci P, dx = 0, 

because of the orthogonality of P,, Pi when j< n - 1; hence (x - x0)(x - X0) would 
have to vanish for real x, which is absurd. Therefore all of the zeros of P, are real. 

The technique that we have exposed above has turned out to be very useful for 
some problems of chemical physics connected with non-local operators. As an 
example we propose there the numerical evaluation of exchange integrals. 
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The exchange operator of the inner shell of a given heavy atom can be written as 

K=x K,, (n = 1, 2,...) 
n 
n---l / 

Kn,cp(rl)=ICl.dr,) j ~~~~(rl)(P(r2)(lr2-r,I)~’ dr2 

tinlm(r)= [(2~~~‘;~‘]1’z r’1p’epirY,m(8, cp) = R,(r) Y,,,(B, cp). 

(6) 

In (6) we suppose that each inner shell can be represented by only one Slater 
function, and we derive formulas for such a case, but the generalisation to two or 
more Slater functions, or different radial parts for different 1, is straightforward. 

Let us assume that we have two functions cDl(r- R,) and @*(r-R,); we can 
expand them in spherical harmonics, with the same centre as K,, and write 

@,(r-R,)= f f cpp,(r)rPYp,(~) 
p=o q= -p 

@*(r-R,) = f f fp,&r) rp’Y,,,y40). 
p’=O q= -p’ 

(7) 

Using the expansion [4] of ( (rz - r, 1) ~ ’ f rom (6) and (7), and after the angular 
integration we obtain [S]: 

j @lK,@2d~=~j ~py(rl)R,(rl)r~+pdrl jf,,(r2)R,I(r2)r:+p:‘np(rlr2)dr2 (8) 
PY 

with 

51n,p(rlr2) = ‘Xi t -$ 
(2p + 1)(21+ I ) 

(2i+ 1)2 
C2(p, I, i, O,O, 0). (9) 

I-0 i-0 > 

The different contributions to the integral (8) are thus characterized by different 
expressions for Y,~,~. Let us consider a term of (8) putting 

vpy(r) = 2 a, r’ 
(10) 

Any of the integrals inside the summation (8), i.e., 

I,, = j vpy(rl) Rn(rl)fp,(r2) R,(rd y,,p(rIy r2) rT+prZ+P drl dr2 
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then becomes 

(11) 

where 

= e s -P1-p2p;+s+P+1pl;+p+*+1y,p(p,p2)dp, dp,, (12) 

where (‘r, = p1 and [rz = p2. 
If we now set 

zpy NE H,f,,(rJ 'Ppy(rj) 
0 

(13) 

we obtain, from (lo), (1 l), (12), and (13), 

TABLE I 

Points and Weights for Integrals of the Type (sl K, Is) 

(14) 

N,=l 

N,=2 

P, = 2.5 

P, = 1.45080666151 
P, = 4.54919333846 

N,=3 P, = 1.067 10649908 
P, = 2.93658305757 
P, = 6.49631044424 

N,=4 P, =0.85142460521 
P2 = 2.26616210162 
P, = 4.46282779200 
P, = 8.41958553569 

H,, = 1.25 

H,, = 0.592342882607 
H,, = 0.234375OOOOOl 
Hz,=0.188907117389 

H, , = 0.240656423 163 
H,, = 0.213009553935 
H,, = 0.025990411916 
H,, = 0.400383162779 
H,, = 0.058354143652 
H,, = 0.014252195055 

H,, =0.118885638116 
H,, = 0.143666899247 
H,, = 0.049888875751 
H,, = 0.003635803326 
Hzz = 0.347113462687 
H,, =0.134206486184 
Hz4 = 0.009212922182 
H,, = 0.088296738661 
H,, = 0.008641307252 
Hu = 0.000799572045 
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with 

z2”+l h. 
&=(2n)! gb 

Points vi and weights h, independent of CI,, and 8, are obtained in the way described 
in the first part of this paper. 

By the method explained above we have calculated the points v, ... vN and the 
weights h, for the operators k, (n = l,..., 4) and for N (number of points) from 1 to 
4. These points and weights are reported in Tables I-VIII. 

When the angular part of the functions f and cp is not explicitly given, one must 
calculate these functions at a certain number of points on a given sphere. If we take 
the six points P, on the 3-coordinate axis, then the expression &/3 Cp= 1 f(pi) 
gives the spherical contribution correctly up to 1=4, while the total p-type con- 
tribution, correct up to I= 3, can be obtained by using (l/ri) fi( f(P,) - 
f(Pd+f(P3)-f(Pd+f(P5)-f(Pd).O ur experience shows that these expressions 
are quite simple and accurate. 

TABLE II 

Points and Weights for Integrals of the Type (sl K, Is> 

N,=l 

N,=2 

P, = 3.5 

P, =2.20417150038 
P,=5.79582849959 

H,,=lO 

H,,=4.4928903097 1 
H,, = 1.89922480622 
Hz2 = 1.70866007786 

N,=3 P, = I .70686399052 
P, = 3.94935189695 
P,=7.84378411129 

H,, = 1.74517772185 
Hlz = 1.61463423957 
H,,=0.22026264522 
H>,=3.36457403385 
H,,=0.53307388845 
H,3 = 0.15430669784 

ND=4 P, = 1.39130720352 
P,=3.14594635457 
P,=5.60983247045 
P, = 9.85291398871 

H,,=0.78246320695 
H,, = 1.03024089486 
H,3=0.38244357032 
H,,=0.03256526658 
Hz2=2.83721017743 
H,, = 1.14478563167 
Hz4 = 0.08703518627 
H,, = 0.86867423187 
H,,=0.07363607402 
H44 = 0.01023913636 
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TABLE III 

Points and Weights for Integrals of the Type (sl K, Is) 

N,=l 

N,=2 

P, =4.5 

P,=2.98442150646 
Pz=7.01557849355 

N,=3 P, = 2.38571000425 
Pz=4.95699822302 
P, = 9.15729176967 

ND=4 P, = 1.97795750421 
P2=4.03642409320 
P, = 6.73669720718 
P,= 11.2489211851 

H,, = 137.875 

H,,=59.5236549842 
H,, = 26.5150147847 
H,, = 25.3213154466 

H,, = 22.3214011507 
H,, = 21.5080609440 
H,, = 3.21398391467 
HZz = 47.5169515496 
H,,=8.00902285976 
H,, = 2.57451186326 

H,, = 9.33618260333 
H,, = 13.1560654650 
H,, = 5.18234923422 
H,,=0.49577053909 
Hzz = 39.1551932788 
H23 = 16.3711122141 
HZ,=l.35853988964 
H,, = 13.5964690681 
H,,= 1.23372115161 
H,, = 0.19203806328 

TABLE IV 

Points and Weights for Integrals of the Type (sl K4 Is) 

N,=l 

ND=2 

P, = 5.5 

P, = 3.78475185035 
P, = 8.21524814976 

ND=3 

N,=4 

P,=3.09320767247 
P, = 5.96215731522 
P, = 10.4446350130 

P,=2.59933420998 
P, = 4.93508289110 
P, = 7.85018745280 
P, = 12.6153954062 

H,, = 3010.5 

H,, = 1259.95362836 
H,, = 585.043862312 
H,, = 580.458647015 

H,,=459.363306668 
H,,=458.023820293 
H,, = 73.5849154651 
Hjz = 1051.63493794 
H,, = 186.002715769 
H,, = 64.2788523281 

H,, = 182.109127408 
H,, = 270.878301366 
H,, = 112.058746459 
H,, = 11.7073912375 
H,,=850.323150111 
H,, = 366.126554626 
Hz,=32.6598090752 
H,, = 323.947323613 
H,, = 31.0141030701 
H.,,=5.23058720783 
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TABLE V 

Points and Weights for Integrals of the Type (pi K, (p) 

N,=l 

N,=2 

PI = 3.5 

P, =2.33095407918 
P,=5.66904592073 

N,=3 P, = 1.80190654436 
P,=3.98977659082 
Pi = 7.70831686636 

ND=4 P, = 1.48118475461 
P, = 3.18304866743 
P,=5.63524421477 
Pd=9.70052229473 

Hit = 1.75 

H,,=0.890330929842 
H,,=0.24679487 1798 
Hz,=0.366079326560 

H,, =0.386113160475 
H,, =0.221091970685 
H,, =0.015314691567 
H,, = 0.686909691489 
H,,=0.083703882550 
H,3=0.036756050435 

H,, =0.180336107386 
H,z=0.149464453892 
H,,=0.030480366294 
H,, = 0.002018787696 
Hz,=0.616150942836 
H,, =0.179178816543 
Hz,=0.008560466225 
Hxl =0.185646649000 
H,, = 0.012928574601 
H,,=0.002603370244 

TABLE VI 

Points and Weights for Integrals of the Type (pi K, (p) 

N,=l 

N,=2 

P, =4.5 

P, = 2.95833181119 
P, = 7.04166818887 

H,, = 349.15 

H,,= 147.454247660 
H,, = 69.8737816920 
HZz = 61.9481889556 

ND=3 P, = 2.34459171512 
P,=4.94304090496 
P,=9.21236738202 

H,, = 52.4057946143 
H,?=56.4795525848 
H,, = 8.62607881591 
H,* = 119.195327098 
Hz3 = 20.6748171066 
Hx3=5.98798127323 

N,=4 P, = 1.94857369502 
P, = 4.01024967129 
P, = 6.73880190174 
P, = 11.3023748753 

H,, = 21.8022509632 
HIZ = 33.7180302590 
H,, = 14.1937335998 
H,4 = 1.32104042221 
H,, = 95.5691236084 
H,,=43.0705834765 
H14 = 3.67535281145 
Hx,=33.2006789883 
H,, = 3.09022329819 
Hd4 = 0.44001869920 
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TABLE VII 

Points and Weights for Integrals of the Type (pi K, Ip) 

N,=l 

N,=2 

P, = 5.5 

P, = 3.76781902785 
P, = 8.23218097208 

N,=3 P, = 3.06073231235 
P, = 5.95211688356 
P, = 10.4871508025 

ND=4 P, = 2.57437967603 
P, = 4.91029198107 
P, = 7.85502851969 
P, = 12.6602998117 

H,, = 8422.45714286 

H,, = 3478.84375803 
H,, = 1675.68390602 
H,, = 1592.24557278 

H,, = 1220.25198262 
H,, = 1310.38215957 
H,, = 210.116790797 
H,, = 2935.83210755 
H,, = 527.752340554 
H,, = 169. 870470886 

H,, = 479.403020526 
H,, = 759.884073918 
H,, = 325.525931763 
H,, = 32.8530793161 
H,, = 2329.76035654 
H,, = 1057.14138339 
Hz4 = 94.5148357954 
H,, = 887.672781772 
H34 = 86.0871710229 
Hd4 = 13.6080333927 

TABLE VIII 

Points and Weights for Integrals of the Type (pj K4 Jp) 

N,=l 

ND=2 

N,=3 

N,=4 

P, = 6.5 

P, = 4.58842573343 
P,=9.41157426668 

P, = 3.79681850907 
P, = 6.95847649921 
P, = 11.7447049656 

P, = 3.22670816096 
P, = 5.81876229681 
Pj = 8.95954737781 
P,= 13.9949830515 

H,, = 277369.928571 

H,, = 112217.444670 
H,Z = 55221.5510015 
HZz = 54709.3818987 

H,, = 38851.3668961 
Hlz = 42022.0432165 
H,, = 7102.86321170 
Hz2 = 97672.3207730 
H,, = 18153.9325877 
H,, = 6288.56287268 

H,, = 14618.0234416 
Hlz = 23795.8795773 
H,, = 10469.9870176 
H,, = 1137.05835081 
Hzz = 76684.1141546 
Hz, = 35185.8351013 
Hz., = 3312.67553856 
H,, = 31396.3331735 
H,4 = 3164.27196324 
H.,4 = 540.042726520 
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TABLE IX 

Values of Some Typical Integrals 

1 2 3 4 Exact 

( WJl K,(z*)l Wz,)> 3.007 4.372 4.358 4.367 4.366 
<ls(dl K,(z,) IWJ) 0.3345 0.3471 0.3468 0.3468 0.3468 
(Wz,)l K,(z,) IWZ,)) 0.1865 0.1413 0.1446 0.1442 0.1442 
(3s(z3)1 K,(z,) 13dz,)) 0.00971 0.00982 0.00969 0.00976 0.00975 
<3.dz,)l K,(z,) 13sk)) 0.9073 0.5781 0.6104 0.6081 0.6099 
(4dzdl KZ(Zd 14dZd)) 0.00374 0.00498 0.00468 0.00474 0.00473 
(4dz‘l)l K,(z,) 14dz.J) 0.2243 0.1432 0.1553 0.1559 0.1557 
(5dz,)l &h) 15s(z,)) 0.0721 0.0502 0.0533 0.0538 0.0537 
(2p(z,)lK,(z,)l2p(z,)) 0.0253 0.0305 0.0306 0.0306 0.0306 
(3P(Z,)l Kz(zd 13P(Z,)) 0.00394 0.00335 0.00338 0.00337 0.00337 
(3Ph)l KZ(Z2) l3Ph)) 0.1394 0.1187 0.1188 0.1181 0.1182 
(4p(z,)lK,(z,)l4P(z,)) 0.5555 0.4609 0.4561 0.4529 0.4536 
(5P(Z,)l K,(z3) l5P(Z,)) 0.00143 0.00139 0.00138 0.00139 0.00139 
<5P(Z5)1 &h) 15P(Z5)) 0.2201 0.1531 0.1588 0.1588 0.1589 
(5P(Z,)l &(Za) I5Pb6)) 0.00277 0.00245 0.00247 0.00248 0.00248 

Note. N, = number of radial points for the numerical integration; values of the orbital exponents: 
z,=16, z,=7, z,=4, z,=2, z,=l, z,=O.5. 

In Table IX we report the approximate and the exact values of some typical 
integrals. These points and weights have been applied to the calculation of the 
matrix elements of the exchange integral K generated by the orbitals representing 
the inner shells of heavy atoms [6]. This approximate calculation constitutes a 
remarkable simplification in the calculations of electronic structure of molecules or 
complexes involving pseudopotentials [7]. 
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